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Deep Neural Networks for Robotics and Autonomous Systems

Deep neural networks (DNNs) have achieved outstanding results in computationally inten-
sive tasks, with breakthrough applications in many areas of robotics and autonomous sys-
tems, e.g. perception, planning and decision making, and control. Thanks to their perfor-
mance they have been deployed in safety-critical domains such as autonomous vehicles or
medicine [Grigorescu et al., 2020].

Figure 1. Boeing Autonomy Testbed Aircraft, Cessna Caravan 208B, used for deploying a learning-enabled
controller [Cofer et al., 2022]

For instance, ACAS Xu, an unmanned aircraft collision avoidance system, was compressed
without loss of performance by replacing look-up tables with a set of DNNs [Julian et al.,
2016]. Cofer et al. [2022] deployed and tested the compressed ACAS Xu in an autonomous
aircraft in various potential collision scenarios (see Figure 1).

Formal Verification of Deep Neural Networks
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Figure 2. Adversarial perturbations are indistinguishable by humans but can fool a DNN classifier.

Despite their high performance, DNNs are known to be sensitive to small changes in their
inputs, whether from noisy inputs or malicious perturbations [Szegedy et al., 2013]. As a
result, in recent years the verification community has developed formal verification tools for
DNNs, i.e. tools that allow reasoning on DNNs’ critical properties using explicit mathematical
modelling and sound logic.

The most commonly studied property is robustness, defined as the ability of a network,
usually a classifier, to give stable outputs for all Lp-norm bounded perturbations around a
correctly classified input.

Figure 3. Geometry of the ACAS Xu controller [Katz
et al., 2017]

Katz et al. [2017] formulated and verified that
the compressed ACAS Xu controller satisfied
some domain-specific safety properties, e.g.
”If an intruder is directly ahead and is mov-
ing towards the ownship, the controller will
advise to turn left or right.”

Industrial Applications of Formal Verification

Formal verification has known successful applications in industries where errors can have
a significant impact, such as hardware manufacturing, cryptography or transportation [Hunt
et al., 2017].

Imandra is an industrial verification tool that has been successfully applied in finance, for
instance by formalising the FIX banking exchange protocol [Passmore, 2021]. Its logic is based
on a pure subset of OCaml, and its interactive proof mode is based on a typed, higher-order
lifting of the Boyer-Moore waterfall for inductive reasoning [Boyer and Moore].

Once the model is verified, Imandra has the capacity to export it to native OCaml while pre-
serving its semantics. The exported program can then benefit from native OCaml compilation
optimisations.

Several uses of Imandra for guaranteeing safety properties in autonomous systems have
been explored.

Imandra-ROS Interface

Figure 4. Simulation of a robot whose controller is implemented and verified in Imandra [Kanishev, 2018]

Kanishev [2018] presents an Imandra-ROS interface, that allows to implement a ROS node to
control an autonomous robot in Imandra. The controller is implemented using the Imandra
Modelling Language (IML), Imandra’s standardised way of modelling message-driven sys-
tems. The model can be formally verified against a safety specification in Imandra’s reason-
ing environment, and then compiled to a native OCaml program. Thanks to the Imandra-ROS
interface, the controller can then be deployed to control a ROS-operated robot, receiving
sensor data and sending instructions in real time.

DNN Verification in Imandra

Figure 5. Example of a verification query’s execution in Imandra. Note that Imandra proved that the property
doesn’t hold, and provided an executable counter-example as a result.

We formalised common DNN architectures (multi-layer perceptron and convolutional) in
Imandra and used its SMT solving and induction reasoning capabilities to verify that they
satisfy some logical properties [Desmartin et al., 2022]. Imandra’s logic allowed to state and
verify high-level meta-properties about the DNNs, i.e. properties that apply to all networks
with the same structure, which are unsupported by state-of-the-art verifiers. On the other
hand, scaling remained a challenge.

Current Work: A Verified Proof Checker for DNN Verification

DNN verifiers are themselves complex pieces of software and are susceptible to implementa-
tion errors or floating-point imprecision. DNN verifiers usually verify logical properties that
negates a safety specification. If a satisfying assignment is found, it means that the safety
spec doesn’t hold, if no counter-example is found, it means that the safety property holds.
As a result, it is easy to check if a satisfying assignment is correct, by running it through the
DNN, but it is not trivial to check that no satisfying assignment exist.

Proof production is a well-known technique to guarantee the result of verification tools,
used especially in SMT solvers. The verifier produces a proof of its result, which can be
checked externally by a trusted proof checker to guarantee its result’s correctness. The proof
checking procedure is usually simpler than the verification one. Such proof production has
been implemented for the Marabou DNN verifier, but the existing proof checker doesn’t offer
formal guarantee of correctness [Isac et al., 2022].
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Figure 6. Proof-checking workflow

Our current work focuses in implementing a proof checker in Imandra, specifying its sound-
ness property and verifying it.
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